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中国科学技术大学物理学院
2023～2024 学年第二学期考试试卷

课程名称： 热力学与统计物理（A） 课程代码：

开课院系： 物理学院 考试形式： 闭卷

姓名： 学号： 专业：

一、 天然橡胶是一种高分子材料，其力学性质主要由熵改变驱动的。实验上发现
在保持拉力 f 不变时，橡胶棒长度 L随温度 T 增加而减小，这种现象被称
为 Gough-Joule 效应 [提示：系统对外做的元功表达式为 dW = −fdL。]

1. 利用热力学系统的稳定性条件，证明达到热力学平衡态后
(

∂S
∂T

)
L
> 0

以及
(

∂f
∂L

)
T
> 0。

2. 利用 Gough-Joule 效应判断保持温度不变时，橡胶棒的熵是棒长 L 增
函数还是减函数？熵和拉力 f 的关系呢？

3. 利用 Gough-Joule 效应解释快速（即绝热）拉伸橡胶棒时温度升高这
个现象。

4. 假设橡胶棒的拉力和长度的关系可以近似为 f = AT
(

L
L0

− L2
0

L2

)
，其中

A > 0 为常数，L0 = L0(T ) 是外力为零时的自然长度，并且拉力为零
时的热容为 C(T )，求熵的表达式 S(T, L)。

参考答案：

1. 把系统分为相同的两个部分，U1 = U2 = U/2，S1 = S2 = S/2，
L1 = L2 = L/2，这两部分达到平衡时满足

dUi = TdSi + fdLi i = 1, 2



由稳定性条件，保持 S, L 不变时，系统达到稳定平衡态，U 极小。假
设 S1 变为 S1+∆S，L1 变为 L1+∆L，那么 S2, L2 相应变为 S2−∆S，
L2 −∆S。系统总能量改变为

∆U =
1

2

[∂2U1

∂S2
1

+
∂2U2

∂S2
2

]
∆S2 +

1

2

[∂2U1

∂L2
1

+
∂2U2

∂L2
2

]
∆L2 +

[ ∂2U1

∂S1∂L1

+
∂2U2

∂S2∂L2

]
∆L∆S

=
∂2U

∂S2
∆S2 +

∂2U

∂L2
∆L2 + 2

∂2U

∂L∂S
∆L∆S

要求平衡时系统达到 U 极小，那么任何对平衡的偏离都会导致 U 变
大，即 ∆U > 0，因此

0 <
∂2U

∂S2
=

(∂T
∂S

)
L

0 <
∂2U

∂L2
=

(∂f
∂L

)
S

同理，保持温度和总长度 L 不变时，系统稳定平衡时 F 极小。同样
把系分为两个相同的部分，L1 = L2 = L/2。做改变 L1 ⇒ L1 + ∆L，
L2 = L2 −∆L，自由能变动为

dF = −SdT + fdL

∆F =
∂2F

∂L2
∆L2 > 0

因此

∂2F

∂L2
=

(∂f
∂L

)
T
> 0

2.

dU = TdS + fdL ⇒ dF = −SdT + fdL(∂S
∂L

)
T
= −

( ∂f

∂T

)
L
= − ∂(f, L)

∂(T, L)
= −∂(f, L)

∂(f, T )

∂(f, T )

∂(T, L)

=
(∂L
∂T

)
f

(∂f
∂L

)
T

因为
(

∂L
∂T

)
f
< 0，因此

(
∂S
∂L

)
T
< 0，所以等温下，熵是棒长 L 的减函

数。

(∂S
∂f

)
T
=

∂(S, T )

∂(f, T )
=

∂(S, T )

∂(L, T )

∂(L, T )

∂(f, T )
=

(∂S
∂L

)
T
/
(∂f
∂L

)
T
< 0

因此等温下，熵也是拉力 f 的减函数。
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3.

(∂T
∂L

)
S
=

∂(T, S)

∂(L, S)
=

∂(T, S)

∂(T, L)

∂(T, L)

(L, S)
= −

(∂S
∂L

)
T
/
(∂S
∂T

)
L
> 0

因此绝热拉伸时，温度上升。

4.

C(T ) = T
(∂S
∂T

)
f

∣∣∣
f=0

S(T, L0) = S(T, f = 0) = S0 +

∫ T

T0

C(τ)

τ
dτ

(∂S
∂L

)
T
= −

( ∂f

∂T

)
L
= A

( L

L0

− L2
0

L2

)
− AT

( L

L2
0

+ 2
L0

L2

)
L′
0

S(T, L) = S(T, L0) +

∫ L

L0

A
( l

L0

− L2
0

l2

)
− AT

( l

L2
0

+ 2
L0

l2

)
L′
0dl

= S(T, L0) + A
[L2 − L2

0

2L0

+ L2
0

( 1

L
− 1

L0

)]
− AT

[L2 − L2
0

2L2
0

− 2L0

( 1

L
− 1

L0

)]
L′
0

= S(T, L0) + A
( L2

2L0

+
L2
0

L

)
− AT

( L2

2L2
0

− 2L0

L

)
L′
0 −

3AL0

2
− 3ATL′

0

2

二、 Grüneisen 常数，也被称为 Grüneisen 参数、Grüneisen 比例等，是德国物
理学家 Eduard Grüneisen为了描述声子对晶格热膨胀系数的贡献而引入的
一个无量纲参数，其原始定义是 Γ = V

(
∂p
∂U

)
V
。其后在包括流体、高压系

统和宇宙学等众多不同领域都有应用。为了适应不同情况，科学家引入了
很多号称是互相等价的表达式。下面是从各种文献中摘抄出来的几个表达
式，请验证这些表达式是否都和原始表达式等价。如果有不等价的，请列
出不等价式子的标号。

1
αV

κTCV

2
1

κST

(∂T
∂p

)
S

3 V
( ∂S

∂V

)
T
/
(∂S
∂T

)
V

4
α

Cp

其中 α = 1
V

(
∂V
∂T

)
p
，κT = − 1

V

(
∂V
∂p

)
T
和 κS = − 1

V

(
∂V
∂p

)
S
分别是膨胀系数，

等温压缩系数和绝热压缩系数。



Γ = V
( ∂p

∂U

)
V
= V

∂(p, V )

∂(U, V )
= V

∂(p, V )

∂(T, V )
∂(U, V ) = V

∂(p, V )

∂(p, T )

∂(p, T )

∂(T, V )
/
(∂U
∂T

)
V

= −V
(∂V
∂T

)
p
/
[(∂V

∂p

)
T
CV

]
=

V α

κTCV

= 1

2 =
1

TκS

(∂T
∂p

)
S
=

1

T
(−V )

( ∂p

∂V

)
S

(∂T
∂p

)
S
=

−V

T

∂(p, S)

∂(V, S)

∂(T, S)

∂(p, S)
= −V

T

∂(T, S)

∂(V, S)

= −V

T

∂(T, S)

∂(p, V )

∂(p, V )

∂(U, V )

∂(U, V )

∂(V, S)
= −V

T

( ∂p

∂U

)
V
(−)T = Γ

3 = V
∂(S, T )

∂(V, T )

∂(T, V )

∂(S, V )
= −V

∂(S, T )

∂(S, V )
= −V

∂(T, S)

∂(V, S)
= TΓ ̸= Γ

4 =
α

Cp

=
1

V

∂(V, p)

∂(T, p)

1

T

∂(T, p)

∂(S, p)
=

1

V T

∂(V, p)

∂(S, p)
=

1

V T

∂(S, T )

∂(S, p)

=
1

V T

∂(S, T )

∂(S, V )

∂(S, V )

∂(S, p)
= − Γ

V 2

(∂V
∂p

)
S
=

Γ

V κS

̸= Γ

三、 在 T -p 相图上，气液相变的边界线终止于临界点 Tc, pc。临界点之外的区
间（T > Tc，p > pc）称为超临界区，通常认为在超临界区气体和液体不可
区分，统称为超临界流体。最近有物理学家提出在超临界区还可以进一步
分为类气体和类液体区间，二者的边界被称为 Widom 线，由等压热容的
极大值决定。利用 van der Waals（vdW）流体来研究 Widom 线。假设一
摩尔 vdW 流体的状态方程为(

p+
a

V 2

)
(V − b) = RT

1. 用 a, b 表示临界点位置 Tc，pc 和 Vc，并证明以 pc、Vc 和 Tc 为压强、
体积和温度单位时，vdW 状态方程可以统一写成如下无量纲形式(

p+
3

V 2

)(
V − 1

3

)
=

8T

3

以下计算均在无量纲形式下进行。

2. 当压强趋于零时，流体等容热容为常数 C。求在超临界区等压热容的
表达式。

3. 保持温度 T 不变，在超临界区求 Cp 极大时的压强值，由此得到
Widom 线的表达式。

4. 在非常靠近临界点时，可以用热力学方法求出 vdW 流体的气液边界
线的斜率为 4。利用上小题结果，是否可以把 Widom 线看成是气液
边界线的延续？
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1. 临界点

0 =
( ∂p

∂V

)
T
= − RT

(V − b)2
+

2a

V 3

0 =
( ∂2p

∂V 2

)
T
=

2RT

(V − b)3
− 6a

V 4

V − b

2
=

V

3
⇒ Vc = 3b

TC =
8a

27bR

pc =
a

27b2

p

pc
=

RTc

pcVc

(T/Tc)

(V /Vc − b/Vc)
− a

pcV 2
c

1

(V /Vc)2

=
8(T/Tc)

3(V /Vc)− 1
− 3

(V /Vc)2

2.

dF = −SdT − pdV(∂CV

∂V

)
T
= T

∂2S

∂V ∂T
= T

∂2S

∂T∂V
= T

( ∂2p

∂T 2

)
V
= 0 ⇒ CV ≡ C

Cp = T
(∂S
∂T

)
p
= T

∂(S, p)

∂(T, p)
= T

∂(S, p)

∂(T, V )

∂(T, V )

∂(T, p)

= T
[(∂S

∂T

)
V

( ∂p

∂V

)
T
−
( ∂S

∂V

)
T

( ∂p

∂T

)
V

]
/
( ∂p

∂V

)
T

= CV − T
( ∂p

∂T

)
V

2

/
( ∂p

∂V

)
T

= C − T
64

(3V − 1)2
/
[
−24T/(3V − 1)2 + 6/V 3

]
= C +

32T

12T − 3(3V − 1)2/V 3
= C +

8

3

T

T − (3V − 1)2/(4V 3)

3. Widom line

0 =
(∂Cp

∂p

)
T
=

∂(Cp, T )

∂(p, T )
=

∂(Cp, T )

∂(V, T )

∂(V, T )

∂(p, T )
=

(∂Cp

∂V

)
T
/
( ∂p

∂V

)
T

在超临界区
(

∂p
∂V

)
T
有限且不为零，因此上式等价为

0 =
(∂Cp

∂V

)
T
=

8

3

T

[T − (3V − 1)2/V 3]2

[6(3V − 1)

V 3
− 3(3V − 1)2

V 4

]
0 =

[6(3V − 1)

V 3
− 3(3V − 1)2

V 4

]
⇒ VW = 1

pW =
8TW

3VW − 1
− 3

V 2
W

= 4TW − 3



Widom line 另一种算法

dG = −SdT + V dp

0 =
(∂Cp

∂p

)
T
= T

∂2S

∂p∂T
= T

∂2S

∂T∂p
= −T

(∂2V

∂T 2

)
p

α = −
(∂V
∂T

)
p
= −∂(V, p)

∂(T, p)
= − ∂(V, p)

∂(T, V )

∂(T, V )

∂(T, p)

=
( ∂p

∂T

)
V
/
( ∂p

∂V

)
T

0 =
(∂α
∂T

)
p
=

∂(α, p)

∂(T, p)
=

∂(α, p)

∂(T, V )

∂(T, V )

∂(T, p)

0 =
∂(α, p)

∂(T, V )
=

(∂α
∂T

)
V

( ∂p

∂V

)
T
−
( ∂α

∂V

)
T

( ∂p

∂T

)
V

=
∂2p

∂T 2
−

(
∂p
∂T

)
V(

∂p
∂V

)
T

∂2p

∂T∂V
−

(
∂p
∂T

)
V(

∂p
∂V

)
T

∂2

∂T∂V
+


(

∂p
∂T

)
V(

∂p
∂V

)
T

2

∂2p

∂V 2

=
∂2p

∂T 2
− 2α

∂2p

∂T∂V
+ α2 ∂

2p

∂V 2

0 = − 2

α

∂2p

∂T∂V
+

∂2p

∂V 2

= −2

−24T
(3V−1)2

+ 6
V 3

8/(3V − 1)

−24

(3V − 1)2
+

144T

(3V − 1)3
− 18

V 4

= 6
[
− 24T

(3V − 1)3
+

6

V 3(3V − 1)

]
+

144T

(3V − 1)3
− 18

V 4

0 =
2

3V − 1
− 1

V
⇒ VW = 1

pW =
8TW

3VW − 1
− 3

V 2
W

= 4TW − 3

4. 临界点下点变线经过临界点，斜率为 4；临界点以上的 Widom 线也
经过临界点，斜率也是 4。因此 Widom 线可以看成是相变线的延续。

四、 二氧化碳分子可以溶于水中形成溶液。当溶液中二氧化碳的浓度为 x 时，
其化学势为 µs(T, p, x) = µc(T, p) +RT lnx，其中 µc(T, p) 为温度为 T，压
强为 p 时的溶液中二氧化碳的标准化学势。µc 随压强变动比较小。

1. 计算气体状态下二氧化碳的化学势随压强的变化，假设气体状态的二
氧化碳可以当作理想气体。

2. 求二氧化碳的溶解度（即二氧化碳气体和溶液共存时的溶液浓度）和
压强的关系。

3. 利用这个结果解释打开一个密封的汽水瓶时会有气泡从汽水中冒出来
这个现象。
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1.

dµ = −sdT + vdp

µ(T, p) = µ(T, p0) +

∫ p

p0

vdp = µ(T, p0) +

∫ p

p0

RT

p
dp

= µ(T, p0) + RT ln p−RT ln p0 = µ0(T ) + RT ln p

2. 达到平衡时，二氧化碳在不同部分的化学势相同，因此

µ(T, p) = µ0(T ) + RT ln p = µs(T, p, x) = µc(T, p) + RT lnx

RT lnx = µ0(T )− µc(T, p) + RT ln p

xi = pe[µ0(T )−µc
i (T,p)]/(RT )

3. 由于 µc 随压强变化比较小，因此溶解度和近乎压强成正比。打开密
封汽水后气压减小，溶解度减小。因此二氧化碳会从溶液中分离出来，
由此产生气泡。

五、 考虑磁场对水的相变温度的影响。外加磁场后，Gibbs 自由能改变量为
dG = −SdT + V dp − µ0VMdH，其中 S 为熵，T 为温度，p 为压强，H

为外加磁场强度，M 为磁矩密度，V 为系统体积。在标准条件（温度约为
零摄氏度、压强约为标准大气压）附近，水为具有抗磁性，M = χH。固、
液和气相时磁化率 χ 分别为 χi，i = S, L,G。χi 可近似看成常数，并且
χi < 0。

1. 假设冰和水的摩尔体积 VS 和 VL，以及熔化潜热 LSL 为常数。保持压
强不变时，求冰的熔点改变量 ∆T 和磁场 H 的关系，准确到 H 的最
低阶非零项。

2. 假设水蒸汽可以看成为理想气体，并且相变潜热均可视为常数。求水
三相点的温度改变量 ∆T 和磁场的关系，同样准确到 H 的最低阶非
零项。

参考答案：

1.

dµi = −SidT + Vidp− µ0ViMidH

∆µi = −Si∆T + Vi∆p− µ0ViMiH

等压、固体-液体共存时

− SSdT − µ0VSMSdH = −SLdT − µ0VLMLdH

dT = −µ0
VLML − VSMS

SL − SS

dH = −µ0
VLχL − VSχS

SL − SL

HdH

∆T = −µ0
T (VLχL − VSχS)

2LLS

H2



2. 三相点

− SSdT + VSdp− µ0VSMSdH = −SLdT + VLdp− µ0VLMLdH

− SSdT + VSdp− µ0VSMSdH = −SGdT + VGdp− µ0VGMGdH

(SL − SS)
dT

dH
− (VL − VS)

dp

dH
= −µ0(VLML − VSMS)

(SG − SS)
dT

dH
− (VG − VS)

dp

dH
= −µ0(VGMG − VSMS)

dT

dH
= −µ0

(VG − VS)(VLML − VSMS)− (VL − VS)(VGMG − VSMS)

(SL − SS)(VG − VS)− (SG − SS)(VL − VS)

∆T = −µ0
(VG − VS)(VLχL − VSχS)− (VL − VS)(VGχG − VSχS)

2[(SL − SS)(VG − VS)− (SG − SS)(VL − VS)]
H2
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