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《理论力学Ａ》（2025 年秋季）期末考试参考答案

1. 拉格朗日力学（25 分）。讨论二维的弹簧振子的运动，即质量为 m 的粒子在如下的势
场中运动：V (x, y) = 1

2
k (x2 + y2)，其中 k 为常数。已选力心为坐标原点，并选笛卡

尔坐标 x, y 为广义坐标。

(a) 写出系统的拉格朗日量，并根据欧拉-拉格朗日方程推导出粒子的动力学方程；

(b) 证明在一般情况下，粒子的运动轨道为椭圆；

(c) 在什么情况下轨道退化为直线？

答：

(a) 二维谐振子的拉格朗日量为： · · · · · · 5′

L =
1

2
m

(
ẋ2 + ẏ2

)
− 1

2
k
(
x2 + y2

)
(1)

代入欧拉-拉格朗日方程，得到： · · · · · · 5′

mẍ = −kx, (2)

mÿ = −ky. (3)

(b) 谐振子的解为： · · · · · · 5′

x = a cosωt, (4)

y = b cos(ωt+ α) (5)

其中 α 为 x, y 方向振动的位相差。

利用和差化积公式，消去含时间 t 的项，得到： · · · · · · 5′

cosα = cos(ωt+ α) cosωt+ sin(ωt+ α) sin(ωt)

=
xy

ab
+
√
(1− x2/a2)(1− y2/b2) (6)

整理得到：
1

a2 sin2 α
x2 − 2

cosα
ab sin2 α

xy +
1

b2 sin2 α
y2 = 1 (7)

容易检验方程的左边是正定的：

1

a2b2 sin4 α
− cos2 α
a2b2 sin2 α

=
1

a2b2 sin2 α
> 0 (8)

因此这是一个椭圆方程, 中心为坐标的原点。

(c) 根据方程（4）和（5）易知，当 α = 0, π 时，轨道退化为直线： · · · · · · 5′

y = ± b

a
x (9)

2. 哈密顿力学（25 分）。考察一个质量为 m、电荷量为 q 的粒子，在三维空间中运动。
空间中存在均匀磁场 B⃗ = Bẑ 和均匀电场 E⃗ = Ex̂（交叉场）。
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(a) 选取规范 A⃗ = (0, Bx, 0) 和标量势 ϕ = −Ex，写出系统的拉格朗日量 L 和哈密
顿量 H(x, y, z, px, py, pz)。 (6 分)

(b) 利用哈密顿正则方程求解 py(t) 和 pz(t)，并说明这两个动量分量是否守恒。若守
恒，指出对应的循环坐标。 (6 分)

(c) 引入新的坐标变量 x′ = x − mcE
qB2（坐标平移），写出变换后的哈密顿量，并说明

该系统在 x− y 平面内的运动可以等效为一个在移动中心做圆周运动（回旋运动）
的粒子。 (8 分)

答：

(a) 带电粒子的拉氏量为： · · · · · · 2′

L =
1

2
m(ẋ2 + ẏ2 + ż2) +

qB

c
xẏ + qEx

广义动量： · · · · · · 3′

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ +

qB

c
x

pz = mż

哈密顿量： · · · · · · 5′

H = pxẋ+ pyẏ + pz ż − L

=
p2x +

(
py − qB

c
x
)2

+ p2z
2m

− qEx (10)

(b) 显眼，y, z 为循环坐标，相应的守恒量为：py, pz。 · · · · · · 6′

(c) 根据哈密顿正则方程，得到 x 方向的运动方程为： · · · · · · 5′

ṗx = −∂H
∂x

=
py
m

− q2B2

mc2
x+ qE (11)

即：
ẍ =

1

m

(py
m

+ qE
)
− ω2

Bx ≡ −ω2
B(x− xc) (12)

其中 ωB = qB/mc 为回旋频率，以及：

xc ≡
pyc

qB
+
mc2E

qB2
(13)

解得： · · · · · · 2′

x(t) = xc +A cos(ωBt+ ϕ) (14)

代入 y 方向的运动方程，得到：

ẏ =
py
m

− ωBx(t) =
py
m

− ωB(xc +A cos(ωBt+ ϕ)) (15)

直接积分，得到： · · · · · · 2′

y(t) = −cE
B
t−A sin(ωBt+ ϕ) + y0 (16)
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3. 考虑一个质量为 m 的粒子在磁单极子产生的磁场中运动。磁场由矢量势 A⃗ 描述，磁
场强度为 B⃗ = g

r2
r̂（g 为磁荷强度）。根据最小耦合原理，粒子的哈密顿量为 H =

1
2m

(p⃗− e
c
A⃗)2。已知在该系统中，机械角动量 L⃗mech = r⃗ ×mv⃗ 不守恒。定义广义角动

量（Poincaré 矢量）为：
J⃗ = r⃗ ×

(
p⃗− e

c
A⃗
)
− eg

c
r̂ (17)

(a) 计算基本泊松括号 [xi, pj ] 和 [pi, pj ]；

(b) 通过泊松括号证明 J⃗ 是守恒量；

(c) 计算得到 J⃗ 的分量之间的对易关系。

答：

(a) 根据基本泊松括号的定义： · · · · · · 2′

[xi, pj ] =
3∑
k=1

(
∂xi
∂xk

∂pj
∂pk

− ∂pj
∂xk

∂xj
∂pk

)
=

∑
k

δikδjk = δij (18)

(b) 注意到，广义角动量不显含 t，所以只需证明 [J,H ] = 0。即：

df

dt
= [f,H ] = 0 · · · · · · 2′ (19)

记动理动量 (Kinetic Momentum) π = mv = p− e
c
A，所以哈密顿量和广义角动

量分量可写为：
H =

∑
l

1

2m
πlπl, Ji = ϵijkxjπk −

eg

c

xi
r

首先计算 π 的对易关系： · · · · · · 2′

[πi, πj ] =
[
pi −

e

c
Ai, pj −

e

c
Aj

]
= −e

c
[pi, Aj ]−

e

c
[Ai, pj ]

=
e

c

(
∂Aj
∂xi

− ∂Ai
∂xj

)
=
e

c
ϵijkBk =

eg

c
ϵijk

xk
r3

同时有 [xi, πj ] = [xi, pj ] = δij。 · · · · · · 1′

计算 [Ji,H]： · · · · · · 5′

[Ji,H] =
1

2m

[
ϵijkxjπk −

eg

c

xi
r
, πlπl

]
=
πl
m

[
ϵijkxjπk −

eg

c

xi
r
, πl

]
上式右侧第一项展开：

[ϵijkxjπk, πl] = ϵijk(xj [πk, πl] + [xj , πl]πk)

代入 [πk, πl] =
eg
c
ϵklm

xm

r3
并利用 ϵijkϵklm = δilδjm − δimδjl 化简可得：

[ϵijkxjπk, πl] =
eg

cr3
(r2δil − xixl) + ϵilkπk

右侧第二项展开：[xi
r
, πl

]
=

∂

∂xl

(xi
r

)
=

∂

∂xl
(xi(xkxk)

−1/2) =
δil
r

− xixl
r3

综合上述结果：

[Ji,H] =
πl
m

[( eg
cr3

(r2δil − xixl) + ϵilkπk

)
− eg

c

(
δil
r

− xixl
r3

)]
=

eg

mcr3
ϵilkπlπk = 0

因为 ϵilk 是反对称的，而 πlπk 是对称的，故缩并为 0。得证。
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(c) 直接计算 [Ji, Jj ]： · · · · · · 8′

[Ji, Jj ] =
[
ϵiabxaπb −

eg

c

xi
r
, ϵjcdxcπd −

eg

c

xj
r

]
展开为四项。

第一项： ϵiabϵjcd[xaπb, xcπd]

[xaπb, xcπd] = xa[πb, xc]πd + xaxc[πb, πd] + [xa, xc]πdπb + xc[xa, πd]πb

记 Li = ϵiabxaπb 为运动角动量，注意到 [πa, πb] ̸= 0 将引入新的不属于原本角动
量对易关系的项，整理得：

[Li, Lj ] = ϵijkLk + ϵiabϵjcdxaxc[πb, πd] = ϵijkLk +
eg

c
ϵijk

xk
r

第二项和第三项（交叉项）：[
Li,

xj
r

]
= ϵiabxa

[
πb,

xj
r

]
= ϵiabxa

(
δbj
r

− xbxj
r3

)
=

1

r
ϵijkxk

同理： [xi
r
, Lj

]
= −

[
Lj ,

xi
r

]
= −1

r
ϵjkixk =

1

r
ϵijkxk

注意前面的系数符号，此处需仔细处理。在 [Ji, Jj ]中，这两项对应为 −[Li,
eg
c

xj

r
]−

[ eg
c
xi

r
, Lj ]。

第四项： [xi
r
,
xj
r

]
= 0

(因为坐标之间互相对易)。
综合所有项：

[Ji, Jj ] = [Li, Lj ]−
eg

c

[
Li,

xj
r

]
− eg

c

[xi
r
, Lj

]
+ 0

=
(
ϵijkLk +

eg

c
ϵijk

xk
r

)
− eg

c

(
1

r
ϵijkxk

)
− eg

c

(
1

r
ϵijkxk

)
= ϵijkLk −

eg

c
ϵijk

xk
r

= ϵijk

(
Lk −

eg

c

xk
r

)
= ϵijkJk

证毕，J⃗ 的分量满足标准的角动量代数关系。

4. 谐振子的哈密顿量为：H = 1
2
(p2ω2q2)，如果我们选第一类生成函数（或称母函数）为：

F1(q,Q) = 1
2
ωq2 cot(2πQ)。

(a) 写出与母函数 F1 对应的正则变换；

(b) 写出新的哈密顿量 K(Q,P )；

(c) 根据新的哈密顿量以及相应的正则方程，写出谐振子的解：q(t), p(t)。

答：
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(a) 根据
pdq − PdQ+ (K −H)dt = dF1 (20)

得到： · · · · · · 2′

p =
∂F1

∂q
= ωq cot(2πQ) (21)

P = −∂F1

∂Q
= πωq2 csc2(2πQ) (22)

因此得到相应的正则变换为： · · · · · · 2′

q =

√
P

πω
sin(2πQ) (23)

q = ω

√
P

πω
cos(2πQ) (24)

(b) 新的哈密顿函数为： · · · · · · 2′

K = H +
∂F1

∂t
=

ω

2π
P (25)

(c) 根据正则方程有：

Q̇ =
∂H

∂P
=

ω

2π
(26)

Ṗ = −∂H
∂Q

= 0 (27)

因此有： · · · · · · 2′

Q(t) =
ω

2π
(t− t0) , P (t) = P0 = cont (28)

最终有： · · · · · · 2′

q(t) =

√
P0

πω
sinω (t− t0) (29)

p(t) = ω

√
f0
πω

cosω (t− t0) (30)

5. 质量为 m 的拉格朗日陀螺，即重力场中绕定点转动的对称陀螺的三个主转动惯量为：
I1 = I2 ̸= I3，其中质心到固定点的距离为 l。

(a) 选取三个欧拉角（ϕ, θ, ψ）作为广义坐标，写出刚体的哈密顿函数H(ϕ, θ, ψ, pϕ, pθ, pψ)；

(b) 通过哈密顿-雅可比方程求积分形式的哈密度主函数 S(ϕ, θ, ψ, t;C1, C2, C3)，其中
C1, C2, C3 为运动积分；

(c) 根据 S(ϕ, θ, ψ, t;C1, C2, C3) 推导拉格朗日陀螺的运动方程（积分形式，不用具体
积分）。

答：

(a) 刚体的拉格朗日量为： · · · · · · 2′

L =
I1
2
θ̇2 +

I1
2

sin2 θϕ̇2 +
I3
2

(
ψ̇ + ϕ̇ cos θ

)2

−mgl cos θ (31)
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正则动量分别为： · · · · · · 2′

pϕ =
∂L

∂ϕ̇
= I1 sin2 θϕ̇+ I3

(
ψ̇ + ϕ̇ cos θ

)
cos θ (32)

pθ =
∂L

∂θ̇
= I1θ̇ (33)

pψ =
∂L

∂ψ̇
= I3

(
ψ̇ + ϕ̇ cos θ

)
(34)

反解，得到：

ϕ̇ =
pϕ − pψ cos θ
I1 sin2 θ

(35)

θ̇ =
pθ
I1

(36)

ψ̇ + ϕ̇ cos θ =
pψ
I3

(37)

根据勒让德变换，得到： · · · · · · 2′

H = T + V (38)

=
I1
2
θ̇2 +

I1
2

sin2 θϕ̇2 +
I3
2

(
ψ̇ + ϕ̇ cos θ

)2

+mgl cos θ (39)

=
p2θ
2I1

+
(pϕ − pψ cos θ)2

2I1 sin2 θ
+
p2ψ
2I3

+mgl cos θ (40)

(b) 不含时的哈密顿-雅可比方程为： · · · · · · 2′

E =
1

2I1

(
∂W

∂θ

)2

+
1

2I1 sin2 θ

(
∂W

∂ϕ
− ∂W

∂ψ
cos θ

)2

+
1

2I3

(
∂W

∂ψ

)2

+mgl cos θ

(41)
假设 W (ϕ, θ, ψ) 可分离变量： · · · · · · 2′

W (ϕ, θ, ψ) = Pϕϕ+ Pψψ +Wθ(θ) (42)

其中 E,Pϕ, Pψ 为三个首积分。代入哈密顿-雅可比方程得到： · · · · · · 2′

dWθ

dθ = ±
√

2I1(E −mgl cos θ)− I1
I3
P 2
ψ − 1

sin2 θ
(Pϕ − Pψ cos θ)2 (43)

因此有： · · · · · · 2′

S = −Et+Pϕϕ+Pψψ±
∫ θ

dθ
√
2I1(E −mgl cos θ)− I1

I3
P 2
ψ − 1

sin2 θ
(Pϕ − Pψ cos θ)2

(44)
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(c) 由 S 得到： · · · · · · 6′

Qϕ =
∂S

∂Pϕ
(45)

= ϕ±
∫ θ

dθ (Pϕ − Pψ cos θ)/ sin2 θ√
2I1(E −mgl cos θ)− I1

I3
P 2
ψ − 1

sin2 θ
(Pϕ − Pψ cos θ)2

(46)

Qψ =
∂S

∂Pψ
(47)

= ψ ±
∫ θ

dθ
− I1
I3
Pψ + (Pϕ − Pψ cos θ) cos θ

sin2 θ√
2I1(E −mgl cos θ)− I1

I3
P 2
ψ − 1

sin2 θ
(Pϕ − Pψ cos θ)2

(48)

QE =
∂S

∂E
(49)

= −t±
∫ θ

dθ I1√
2I1(E −mgl cos θ)− I1

I3
P 2
ψ − 1

sin2 θ
(Pϕ − Pψ cos θ)2

(50)

以及： · · · · · · 3′ (附加分，上三式给出了广义坐标随时间的演化，原则上还需要
得到正则动量随时间的演化。)

pϕ =
∂S

∂ϕ
= Pϕ = const. (51)

pψ =
∂S

∂ψ
= Pψ = const. (52)

pθ =
∂S

∂θ
= ±

√
2I1(E −mgl cos θ)− I1

I3
P 2
ψ − 1

sin2 θ
(Pϕ − Pψ cos θ)2 (53)


