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一、 Stirling 热机使用回热器（regenerator）临时存放热，其工作循环包括如下
四个过程。

• 等温膨胀：气体和温度为 T1 的高温热源接触，体积从 V1 膨胀到 V2；

• 等容降温：保持体积 V2 不变，气体向回热器释放热量 Qr 温度降低到

T2；

• 等温压缩：气体和温度为 T2 的低温热源接触，体积从 V2 压缩到 V1；

• 等容升温：保持体积 V� 不变，从回热器回收热，温度升高到 T1。

以 N 摩尔理想气体为工作物质，其热容 CV 是不依赖于温度的常数。

1. 求每个过程系统对外做功和吸热大小。

2. 计算理想的 Stirling 热机的效率。

3. 如果回热器的效率是 ηR，即每个循环系统从回热器回收热量最大值

为 ηRQr，剩余部分需要从高温热源吸热来补充，求这种热机的效率。

参考答案：

1. 每个过程做功 ∆W 和吸热 ∆Q

• 等温膨胀

∆Q1 = ∆W1 =

∫ V2

V1

pdV =

∫
NRT1

V
dV = NRT1 ln V2

V1



• 等容降温

∆W2 = 0

∆Q2 =

∫ T2

T1

CV dT = CV (T2 − T1)

Qr = −∆Q2 = CV (T1 − T2)

• 等温压缩

∆W3 = ∆Q3 =

∫ V1

V2

pdV =

∫ V1

V2

NRT2

V
= NRT2 ln V1

V2

= −NRT2 ln V2

V1

• 等容升温

∆W4 = 0

∆Q4 =

∫ T1

T2

CV dT = CV (T1 − T2)

2. 理想 Stirling 热机效率

∆Q = ∆Q1 = NRT1 ln V2

V1

∆W = ∆W1 +∆W2 +∆W3 +∆W4 = NR(T1 − T2) ln V2

V1

η =
∆W

∆Q
=

T1 − T2

T1

= 1− T2

T1

3. 回热器效率为 ηR，则

∆Q = ∆Q1 +Qr − ηRQr = NRT1 ln V2

V1

+ (1− ηR)CV (T1 − T2)

∆W = NR(T1 − T2) ln V2

V1

η =
∆W

∆Q
=

(T1 − T2) ln V2

V1

T1 ln V2

V1
+ (1− ηR)CV (T1 − T2)

二、 在面积为 A、距离为 a 的平行金属板之间有温度为 T 的热辐射，金属板的

尺寸远大于二者的距离（
√
A ≫ a）。在考虑 Casimir 效应（即零点振动的

影响）后，辐射对于金属板的压强 p1 和对侧面的压强 p2 不同。热辐射的

内能密度 u = U/(Aa) 以及压强在经典极限（kBT ≫ 2πh̄c/a）下的表达式

为

u =
π2(kBT )

4

15(h̄c)3
， p1 =

π2(kBT )
4

45(h̄c)3
− ζ3kBT

4πa3
， p2 =

π2(kBT )
4

45(h̄c)3
+

ζ3kBT

8πa3
；

在量子极限下（kBT ≪ 2πh̄c/a）相应的表达式为

u =
ζ3(kBT )

3

π(h̄c)2a
− π2h̄c

720a4
， p1 = − π2h̄c

240a4
， p2 =

ζ3(kBT )
3

2π(h̄c)2a
+

π2h̄c

720a4
。

式中 kB，h̄ 和 c 分别是 Boltzmann，Planck 常数和光速，ζ3 =
∑∞

n=1 n
−3。
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1. 证明系统对外做功的元功表达式为 dW = p1Ada+ p2adA。【提示：为

简便计算，可以假设金属板为圆形或者正方形。】

2. 在经典极限下，计算 Gibbs 函数　 G1(T, p1, A) = U − TS + p1Aa 和

G2(T, a, p2) = U − TS + p2Aa。

3. 分别求在经典、量子极限下的等容热容 CA,a(T )。比较二者的不同之

处，猜测导致这种不同的来源。

4. 求在量子极限下 Casimir 熵 S = S(U,A, a) 的表达式。

参考答案：

1. 假设金属板为半径为 R 的圆板，A = πR2，作用在金属板上的力为

F1 = p1A、方向垂直于金属板；作用在侧面的力为 F2 = p2 × 2πRa，

方向平行于半径方向。当 a ⇒ a+ da，半径 R ⇒ R+ dR 时，系统对

外做功

dW = F1da+ F2dR = p1Ada+ 2πp2aRdR

= p1Ada+ p2ad(πR
2) = p1Ada+ p2adA

2. (∂S
∂T

)
Aa

=
1

T

(∂U
∂T

)
Aa

=
4π2k4

BT
2

15(h̄c)3
Aa(∂S

∂a

)
TA

=
(∂(p1A)

∂T

)
Aa

=
4π2k4

BT
3

45(h̄c)3
A− ζ3kB

4πa3
A(∂S

∂A

)
Ta

=
(∂(p2a)

∂T

)
Aa

=
4π2k4

BT
3

45(h̄c)3
a+

ζ3kB
8πa2

S =
4π2k4

BT
3

45(h̄c)3
Aa+

ζ3kB
8πa2

A

F = U − TS = −π2(kBT )
4

45(h̄c)3
Aa− ζ3kBT

8πa2
A

G1 = F + p1Aa = −ζ3kBT

8πa2
A− ζ3kBT

4πa2
A

= −3ζ3kBT

8πa2

G2 = F + p2Aa = 0

3. 经典极限

CAa =
(∂U
∂T

)
Aa

=
4π2k4

BT
3

15(h̄c)3
Aa

量子极限

CAa =
(∂U
∂T

)
Aa

=
3ζ3k

3
BT

2

π(h̄c)2
A



经典情况下热容和温度立方以及总体积 V = Aa 成正比，量子极限下

和温度平方以及面积成正比。差比来源与在量子极限，垂直于金属板

方向的辐射被冻结，体系从三维变成二维。

4.

T =
1

kB

(π(h̄c)2
ζ3

)1/3(U
A

+
π2h̄2c

720kBa3

)1/3

(∂S
∂T

)
Aa

=
1

T

(∂U
∂T

)
Aa

=
3ζ3k

3
BT

π(h̄c)2
A(∂S

∂a

)
TA

=
(∂(p1A)

∂T

)
Aa

= 0(∂S
∂A

)
Ta

=
(∂(p2a)

∂T

)
Aa

=
3ζ3k

3
BT

2

2π(h̄c)2

S =
3ζ3k

3
BT

2

2π(h̄c)2
A

=
3

2
kBA

( ζ3
π(h̄c)2

)1/3(U
A

+
π2h̄2c

720kBa3

)2/3

三、 磁系统的元功（系统对外做功）为 dW = −HdM，H 为磁场，M 为磁矩。

1. 证明在稳定的磁系统中，CM ≥ 0。

2. 在临界点（T = Tc，H = 0），系统的热力学量具有奇异性，

χT (T,H = 0) =
(

∂M
∂H

)
T
= C|T − Tc|−γ，M(T,H = 0) = M0|T − Tc|β，其

中 C 和 D为常数，β 和 γ 为临界指数，求 T ≃ Tc，H = 0时 CH−CM。

3. 在临界点附近，CH(T,H = 0) = A|T − Tc|−α，A 为常数，α 是另一个

临界指数。假设这些临界指数均大于零，利用系统的稳定条件，证明

Rushbrook 关系：α + 2β + γ ≥ 2。

参考答案

1. 孤立系统中，总能量保持 2U，总磁矩保持 2M，达到平衡时熵 ST 极

大。由此可以得到体系中所有位置温度相同。把系统均匀分成两个部

分，每部分内能都是 U，磁矩为 M，熵为 S = S(U,M)，

dS =
1

T
dU +

H

T
dM

ST = S(U,M) + S(U,M) = 2S(U,M)

第一部分内能变为 U + δU，第二部分内能变为 U − δU，总熵改变量
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为

0 ≥ δST = S(U + δU,M) + S(U − δU,M)− 2S(U,M)

=
∂2S

∂U2
δU2 =

(∂1/T
∂U

)
M
∆U2 = − 1

T 2

(∂T
∂U

)
M
∆U2

= − 1

T 2CM

∆U2

CM ≥ 0

2.

dF = −SdT +HdM

CH = T
(∂S
∂T

)
H
= T

∂(S,H)

∂(T,H)
= T

∂(S,H)

∂(T,M)

∂(T,M)

∂(T,H)

= T
[(∂S

∂T

)
M

( ∂H

∂M

)
T
−
( ∂S

∂M

)
T

(∂H
∂T

)
M

](∂M
∂H

)
T

= CM + T
(∂H
∂T

)
M

(∂H
∂T

)
M

(∂M
∂H

)
T

= CM + T
∂(H,M)

∂(T,M)

∂(H,M)

∂(T,M)

∂(M,T )

∂(H,T )

= CM + T
∂(H,T )

∂(T,M)

∂(H,M)

∂(H,T )

[
−∂(H,M)

∂(H,T )

]
= CM + T

[(∂M
∂T

)
H

]2
/
(∂M
∂H

)
T

CH − CM = T
[(∂M

∂T

)
H

]2
/
(∂M
∂H

)
T
≃ 4TcM

2
0

C
|T − Tc|2β−2+γ

3. 由稳定性条件 CH ≥ CH − CM，以及临界点附近热容行为

A|T − Tc|−α ≥ 4TcM
2
0

C
|T − Tc|2β+γ−2

−α ≤ 2β + γ − 2

2 ≤ α + 2β + γ

四、 考虑潮湿空气在大气层中上升的问题。地面上有一团空气，其温度 T0 =

300 K，压强 p0 为一个大气压，水蒸汽的摩尔百分比为 x。把此气体当成是

理想气体，其摩尔质量为 m，等压热容和等容热容的比值为 γ = 5/3。在

同等条件下，潮湿空气的密度低于干燥空气，因此潮湿空气会上升。假设

气体上升过程是绝热的，且不考虑水蒸汽凝结成水，求此气体的压强和温

度随高度的变化。（15 分）



参考答案：

[p(z)− p(z +∆z)]A = Nmg ⇒ dp

dz
A∆z = Nmg

dp

dz
= − N

A∆z
mg = − p

RT
mg ⇒ dp

p
= −mg

RT
dz

const ≡ pV γ = CpT/pγ ⇒ p1−γT γ ≡ const

(1− γ)p−γT γdp+ γp1−γT γ−1dT = 0

(γ − 1)
dp

p
= γ

dT

T
⇒ mg

RT
dz =

γ

γ − 1

dT

T

dT = −(γ − 1)mg

γR
dz ⇒ T (z) = T0 −

(γ − 1)mg

γR
z

dp

p
= − mg

T0 − (1− γ−1)mgz/R
dz

ln p

p0
= ln mg/[T0 − (1− γ−1)mgz/R]

mg/T0

= − ln
[
1− (1− γ−1)mgz/(RT0)

]
五、 温度为 100◦C 时，水的饱和蒸汽压为一个大气压。水变为蒸汽的潜热

L = 4× 104J/mol，L 随温度变化可以忽略。假设水蒸汽为理想气体，并且

水的摩尔体积远远小于水蒸汽的摩尔体积。（25 分）

1. 求温度为 T 时水的饱和蒸汽压为 p∗(T )。

2. 把空气当成理想混合气体，在温度为 T，压强为 p 时，空气中水蒸汽

的化学势为 µv(T, p, x) = µ0
v(T, p) + RT lnx，其中 x 是空气中水蒸汽

的摩尔百分比。求能够凝结成水的压强和温度的关系。【提示：因为水

摩尔体积很小，水的化学势 µw(T, p) ≃ µw(T, p
∗(T ))。】

3. 利用第四题的结果，求绝热上升的潮湿空气中水蒸汽凝结为雨的高度。
可以只列出方程，不求解。

4. 同上一小题，有部分水蒸汽凝结为雨掉落后。如果这团空气下降到地
面出，那么其温度会高于初始的温度 T0。请解释这一现象。

参考答案：

1.

µv(T, p
∗) = µw(T, p

∗)

− svdT + vvdp
∗ = −sw + vwdp

∗ ⇒ dp∗

dT
=

sv − sw
vv − vw

=
T (sv − sw)

T (vv − vw)
=

L

T (vv − vw)

vv =
RT

p
vw ≃ 0

dp∗

dT
=

Lp∗

RT 2
⇒ ln p∗(T )

p∗(Tv)
=

L

RTv

− L

RT

p∗(T ) = p∗(Tv)e
L

RTv
− L

RT

Tv = 100◦C = 373K, p∗V = p0 = 1atm
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2.

µv(T, p, x) = µv(T, p) +RT lnx

µv(T, p
∗
x, x) = µv(T, p

∗
x) +RT lnx = µw(T, p

∗
x) = µw(T, p

∗) = µv(T, p
∗)

xp∗x(T ) = p∗(T ) ⇒ p∗x(T ) = p∗(T )/x

3. 开始凝结出水时，满足 p = p∗(T )/x，以及

ln p

p0
=

γ

γ − 1
ln
( T

T0

)
T0 = 300K

ln p

p0
= ln p∗(T )

xp0
=

L

RTv

− L

RT
− lnx

连立求解这两个方程，得到 T，再利用

z =
RTγ(T0 − T )

(γ − 1)mg

得到高度 z。

4. 水蒸汽凝结成水之后释放热（潜热），温度升高。因此下降之后温度高
于原始温度。


