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【答题中可能用到的数学关系和物理常数：∫ ∞
0

x2e−x
2

dx =

√
π

4
；

∫ ∞
0

e−x
2

dx =

√
π

2
；∫

xne−xdx = −
n∑

m=0

n!xn−m

(n−m)!
e−x = −[xn + nxn−1 + · · ·+ n(n− 1) · · · 2x+ n!]e−x；∫ ∞

0

xp−1

ex − 1
dx = Γ(p)ζ(p)；

∫ ∞
0

xp−1

ex + 1
dx =

(
1− 1

2p−1

)
Γ(p)ζ(p)，

其中 Γ(p) 是欧拉 Γ 函数。Γ(p+ 1) = pΓ(p)；当 p 是整数时 Γ(p+ 1) = p!；

Γ(1/2) =
√
π。ζ(p) =

∑∞
n=1 n

−p 是黎曼 ζ 函数。ζ(3/2) ' 2.612，ζ(2) = π2/6,

ζ(5/2) ' 1.3415，ζ(3) ' 1.202，ζ(4) = π4/90。

Boltzmann 常数kB = 1.38× 10−23 J/K；电子质量 me = 9.1× 10−31 kg；

光速 c = 3× 108m/s。】



一、 一高分子链可以看成是有 N 个节的链条，每个节长度可以为a 或者 b。

第 i 个节的振动可以用频率为 ωi 的简谐振子来描述，可能的能量为 εin =

(ni+1/2)~ωi，ni = 0, 1, 2, · · · 为振动量子数。当节的长度为 a时 ωi = ωa，

长度为 b 时 ωi = ωb，且 ωa > ωb。系统温度为 T。

1. 求系统的配分函数。

2. 求此高分子链的平均长度 L 和能量，并写出低温和高温极限。

3. 求长度的涨落。

1. 解法一：单粒子配分函数

z =
∑
l=a,b

∞∑
n=0

e−β(n+1/2)~ωl =
e−β~ωa/2

1− e−β~ωa
+

e−β~ωb/2

1− e−β~ωb

= za + zb

系统配分函数Z = zN。

解法二：

Z =
∑
{lini}

e−β
∑
i(ni+1/2)~ωli =

∑
{li}

∏
i

∞∑
ni=0

e−β
∑
i(ni+1/2)~ωli

=
∑
{li}

∏
i

e−β~ωli/2

1 + e−β~ωli

=
N∑

Na=1

CNa
N zNaa zNbb = (za + zb)

N

2. 处于长度为l，量子数为n的节的个数为

fln =
N

z
e−β~(n+1/2)ωl

Nl =
∑
n

fln =
N

z
zl = N

zl
za + zb

L =
∑
l=a,b

Nll = N
zaa+ zbb

za + zb
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解法二：

Na =
1

Z

∑
{lini}

Nae
−β

∑
i(ni+1/2)~ωli

=
1

Z

∑
Na

NaC
Na
N zNaa zNbb =

1

Z

∑
Na

CNa
N za

∂zNaa zNbb
∂za

=
za
Z

∂Z

∂za

=
∂ lnZ

∂ ln za
=
N

Z
za = N

za
za + zb

L = Naa+Nbb = Naa+ (N −Na)b = Naa+ (N −Na)b = N
zaa+ zbb

za + zb

高温下，β~ωl � 1，

zl =
e−β~ωl/2

1− e−β~ωl
' 1

β~ωl
=
kBT

~ωa

L = N

akBT
~ωa + bkbT

~ωb
kBT
~ωa + kBT

~ωb

= N
aωb + bωa
ωa + ωb

低温下，β~ωa � β~ωb，

zl =
e−β~ωl/2

1− e−β~ωl
' e−β~ωl/2

L ' N
ae−β~ωa/2 + be−β~ωb/2

ae−β~ωa/2 + be−β~ωb/2
' Nb

3. 涨落

L = Naa+Nbb = Naa+ (N −Na)b = Nb+Na(a− b)
L = Nb+Na(a− b)

L
2

= N2b2 + 2NNa(a− b)b+Na
2
(a− b)2

L2 = [Nb+Na(a− b)]2 = N2b2 + 2NNa(a− b)b+N2
a (a− b)2

= N2b2 + 2NNa(a− b)b+Na
2
(a− b)2

∆L2 = L2 − L2
= (N2

a −Na
2
)(a− b)2 = ∆N2

a (a− b)2

N2
a =

1

Z

1

Z

∑
Na

N2
aC

Na
N zNaa zNbb =

1

Z

(
za

∂

∂za

)2

Z =
1

Z

∂2Z

∂(ln za)2

=
∂2 lnZ

∂(ln za)2
+
( ∂ lnZ

∂ ln za

)2

=
∂2 lnZ

∂(ln za)2
+Na

2

∆N2
a =

∂2 lnZ

∂(ln za)2
= za

∂

∂za

Nza
za + zb

= N
( za
za + zb

− z2
a

(za + zb)2

)
= N

zazb
(za + zb)2

∆L2 = N
zazb(a− b)2

(za + zb)2



二、 利用下面模型理解磁陷阱蒸发降温：有 N 个质量为 m 的粒子被约束在二

维磁陷阱里，位于 r = (x, y)，动量为 p = (px, py) 的粒子能量为

ε(r,p) =
p2

2m
+

1

2
mω2r2，

其中 ω 表征磁场约束强度。不考虑相互作用和全同性。

1. 求单粒子的态密度。

2. 系统原来的温度为 T，把磁陷阱约束减低，假设能量大于 εm 的粒子

脱离陷阱，其余粒子仍然留在陷阱里。求剩余的粒子数 N ′。

3. 恢复磁陷阱约束强度，剩余粒子重新达到平衡。假设恢复平衡过程系

统总能量保持不变，求此时温度。

1.

g(ε) =

∫
δ(ε− p2

2m
− 1

2
mω2r2)

d2rd2p

h2

=
(2π)2

h2

∫ ∞
0

rdr

∫ ∞
0

δ(ε− p2

2m
− 1

2
mω2r2)pdp

=
m(2π)2

h2

∫ ∞
0

Θ(ε− 1

2
mω2r2)rdr

=
ε

(~ω)2

2. 单粒子配分函数

z =

∫ ∞
0

g(ε)e−βεdε =
1

(~ω)2

∫ ∞
0

εe−βεdε =
1

(~ωβ)2

∫ ∞
0

xe−xdx =
1

(β~ω)2
=
(kBT

~ω

)2

能量小于 εm 的粒子数为

N ′ =
N

z

∫ εm

0

g(ε)e−βεdε = N(β~ω)2

∫ εm

0

ε

(~ω)2
e−βεdε

= N

∫ βεm

0

xe−xdx = N(−1− x)e−x|βεm0

= N [1− (1 + βεm)e−βεm ]

3. 剩余粒子能量为

Ur =

∫ εm

0

ε
N

z
g(ε)e−βεdε = N(β~ω)2

∫ εm

0

ε2

(~ω)2
e−βεdε

=
N

β

∫ −βεm
0

x2e−xdx = NkBT (−x2 − 2x− 2)e−x|βεm0

= NkBT
{

2− [2 + 2βεm + (βεm)2]e−βεm
}
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粒子数为 N ′，温度为 T ′ 时系统能量为

U ′ =

∫ ∞
0

ε
N ′

z′
g(ε)e−β

′εdε = N ′(β′~ω)2

∫ ∞
0

ε2

(~ω)2
e−β

′εdε

=
N ′

β′

∫ ∞
0

x2e−xdx = 2N ′kBT
′

平衡后 Ur = U ′，因此

T ′ =
Ur

2N ′kB
=
NkBT

{
2− [2 + 2βεm + (βεm)2]e−βεm

}
2NkB[1− (1 + βεm)e−βεm ]

= T
1− [1 + βεm + (βεm)2/2]e−βεm

1− (1 + βεm)e−βεm

三、 由于相对论效应，物质和能量可以互相转换，因此在高温时需要考虑

粒子和反粒子对的产生和湮灭。以电子和正电子为例，考虑相对论效应

后，电子数 Ne 和正电子数 Np 都不是确定的量，但是总电荷是确定的，

即 Q = −e(Ne − Np) 是常数，其中 −e 为电子电荷。正负电子都是自旋
为 1/2 的费米子。

1. 假设正负电子单粒子能级为 εil，相应的简并度为 ωil，其中 l 为能级

指标，i = e, p 分别代表电子和正电子。不考虑相互作用，求总能量

为 E，电荷数为 Q 时正负电子的最可几分布函数。

2. 动量为 p 的正负电子的能量都是 ε(p) =
√
m2
ec

4 + c2p2 ' mec
2 +

p2

2me
，其中 me 为电子质量。在 T = 0 K时，体积为 V 里的电荷 Q =

−eN（N > 0），求此时电子的化学势 µe。

3. 同第 2 小题，求低温下（kBT � mec
2）正电子数密度。

4. 在日常环境下，是否需要考虑正电子对系统的贡献？

1. 分布为 {ail}，对应的微观态数 Ω({ail})，

Ω({ail}) =
∏
l

γ(ael , ω
e
l )γ(apl , ω

p
l ) =

∏
l

C
ael
ωel
C
apl
ωpl

=
∏
l

ωel !

ael !(ω
e
l − ael )!

ωpl !

apl !(ω
p
l − a

p
l )!

ln Ω =
∑
l

[
ln

ωel !

ael !(ω
e
l − ael )!

+ ln
ωpl !

apl !(ω
p
l − a

p
l )!

]
=
∑
l

[ωel lnωel − ael ln ael − (ωel − ael ) ln(ωel − ael )

+ ωpl lnωpl − a
p
l ln apl − (ωpl − a

p
l ) ln(ωpl − a

p
l )]



约束条件：E =
∑

l(a
e
l ε
e
l + apl ε

p
l ) 以及 N = −Q/e =

∑
l(a

e
l − a

p
l )，

最可几分布条件为：0 = δ ln Ω− βδE − αδN

0 =
∑
l

[δael (ln
ωel − ael
ael

− βεel − α) + δapl (ln
ωpl − a

p
l

apl
− βεpl + α)]

ael =
ωel

eβε
e
l+α + 1

=
ωel

eβ(εel−µ) + 1

apl =
ωel

eβε
e
l−α + 1

=
ωpl

eβ(εpl +µ) + 1

其中参数 β = 1/(kBT )，α = −βµ 由两个约束条件确定。

2. 温度为零时，费米函数要么为一要么为零。因为总电荷数为负，因此

电子数一定不为零，所以µ = µe > 0。由此正电子数目Np = 0，Ne =

−Q/e+Np = N，

N = 2

∫
d3pd3r

h3
Θ[µe − ε(p)] =

8πV

h3

∫ ∞
0

Θ[µe −mec
2 − p2/(2me)]p

2dp

=
8πV

3h3
[2me(µe −mec

2)]3/2

µe = mec
2 +

1

2me

(3h3N

8πV

)2/3

= mec
2 + εF

3. 低温下化学势µ ' µe，正电子粒子数为

Np = 2

∫
d3pd3r

h3

1

e[µe+ε(p)]/(kBT ) + 1
' 2

∫
d3pd3r

h3
e−[µe+ε(p)]/(kBT )

=
8πV

h3

∫ ∞
0

dp p2 exp
{
−mec

2 + εF +mec
2 + p2/(2me)

kBT

}
=

8πV

h3
e−(2mec2+εF )/(kBT )(2mekBT )3/2

∫ ∞
0

x2e−x
2

dx

= 2V
(2πmekBT

h3

)3/2

e−(2mec2+εF )/(kBT )

4. 日常生活里温度 kBT � mec
2，正电子密度太小，因此可以不考虑正

电子的影响。

四、 在半径为 R 里的纳米环中心加上磁通量为 Φ 的磁场。电子在此纳米环里

的本征态由角动量量子数 l 描述，本征能量为

El =
~2(l + Φ/Φ0)2

2m∗R2
，l = 0,±1,±2, · · · ,

其中 Φ0 = h/e 为量子磁通，m∗ 为电子有效质量。环中电子数比较少，可

以不考虑全同性。

1. 请写出单粒子配分函数。

2. 求每个电子的平均能量 u，并证明它是磁通 Φ 的周期函数。
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3. 每个电子对电流 j 的贡献为 2πR ∂u
∂Φ
，求低温和高温极限下电流和磁

通的关系，并大体画出 Φ–j 曲线。

1. 单粒子配分函数

z(Φ) =
∞∑

l=−∞

e−βεl =
∞∑

l=−∞

e−
β~2

2m∗R2 (l+Φ/Φ0)2

=
∞∑

l=−∞

e−(l+Φ/Φ0)2Θ/T Θ = ~2/(2m∗R2kB)

容易证明对任意整数n，z(Φ + nΦ0) = z(Φ)，

z(Φ + nΦ0) =
∞∑

l=−∞

e−[l+(Φ+nΦ0)/Φ0]2Θ/T =
∞∑

l=−∞

e−[(l+n)+Φ/Φ0]2Θ/T

l′=l+n
====⇒

∞∑
l′=−∞

e−(l′+Φ/Φ0)2Θ/T = z(Φ)

即z(Φ) 是Φ的周期函数，周期为Φ0。

2. 每个粒子的平均能量

u(Φ) = −∂ ln z

∂β
= kBT

2∂ ln z

∂T
=

2kBΘ

z

∞∑
l=−∞

(l + Φ/Φ0)2e−(l+Φ/Φ0)2Θ/T

同上题可以证明u(Φ + nΦ0) = u(Φ) 是以Φ0 为周期的函数。

3. 由于z，u 是Φ 的周期函数，j = 2πR∂u/∂Φ也是Φ的周期函数．假

设−Φ0/2 < Φ < Φ0/2，在此条件下，本征能量最小的态是l = 0。因

此低温下，

z = e−(Φ/Φ0)2Θ/T + e−(Φ/Φ0+1)2Θ/T + e−(Φ/Φ0−1)2Θ/T + · · ·
' e−(Φ/Φ0)2Θ/T

u =
kBT

2

z

∂z

∂T
' kBΘ

e−(Φ/Φ0)2Θ/T

( Φ

Φ0

)2

e−(Φ/Φ0)2Θ/T

= kBΘ
( Φ

Φ0

)2

j = 2πR
∂u

∂Φ
= 2πR =

4πRkBΘ

Φ2
0

Φ

高温下，

z =
∞∑

l=−∞

e−(l+Φ/Φ0)2Θ/T '
∫ ∞
−∞

e−(l+Φ/Φ0)2Θ/Tdl

=

√
T

Θ

∫ ∞
−∞

e−x
2

dx =
1

2

√
Tπ

Θ

u = kBT
2∂ ln z

∂T
=
kBT

2

j = 2πR
∂u

∂Φ
= 0



五、 研究铁磁系统时常常利用自旋波理论：假设 T = 0 K时，系统具有完全的

铁磁序，所有粒子自旋都指向同一个方向，例如 z 轴。对磁有序的偏离可

以用元激发磁振子（magnon）来描述。磁振子可以看成是自旋为零的玻色

子，并且其粒子数不守恒，化学势为零。没有外磁场时，低能下磁振子的

色散关系为

ε(p) = αp2，

其中 p 为动量，α > 0 为常数。系统的磁矩大小可以表示成

M = M0 − γn，

其中 M0 是最大磁矩，n 为磁振子密度，γ 为常数。

1. 求低温下三维铁磁系统磁矩和温度的关系。

2. 用这种方法得到的磁矩小于零时意味着系统的自发磁矩消失，变为顺

磁相，系统不再有长程序。求三维铁磁系统的相变温度。

3. 证明在自旋波理论下，有限温度下二维系统没有铁磁长程序。

1. 磁振子密度为

n =

∫
1

eβε(p) − 1

d3p

h3
=

4π

h3

∫ ∞
0

1

eβαp2 − 1
p2dp

=
2π

h3(αβ)3/2

∫ ∞
0

√
x

ex − 1
dx =

2π

h3(αβ)3/2
Γ(3/2)ζ(3/2)

= ζ(3/2)
(πkBT
αh2

)3/2

M = M0 − ζ(3/2)
(πkBT
αh2

)3/2

2. 相变温度大约在M = 0处，即

Tc =
αh2

πkB

( M0

γζ(3/2)

)2/3

3. 二维情况下

n =

∫
1

eβε(p) − 1

d2p

h2
=

2π

h2

∫ ∞
0

1

eβαp2 − 1
pdp

=
π

αβh2

∫ ∞
0

dx

ex − 1
=
πkBT

αh2

∫ ∞
0

dx

ex − 1

被积函数在x → 0 时为 1
x
，因此积分发散．因此只要在温度不为零

时，都有n→∞，因此得到的M < 0，由此在自旋波理论下，二维系

统没有长程序。
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