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一、 以外磁场 H，温度 T 为自变量，石墨烯的摩尔 Gibbs 自由能为

G(T,H) = −NAkBT ln
[1

2
+
k2BT

2 + λ2R
~2ω2

D

]
−NAkBT ln

[
cosh

λR
kBT

]

其中 ωD = vF
√
eH/~ 是回旋频率，vF , λR 分别是石墨烯的 Fermi 速度

和 Rashba作用强度，e,NA, kB, ~则分别是电子电荷，Avogadro，Boltzmann

以及 Planck 常数。

1. 求系统的焓H = G+ TS。

2. 求系统的熵。

3. 求等场热容CH，并写出高低温极限。



S = −
(∂G
∂T

)
H

= NAkB ln
[1

2
+
k2BT

2 + λ2R
~2ω2

D

]
+NAkBT

2k2BT/(~ωD)2

1/2 + (k2BT
2 + λ2R)/(~ωD)2

+NAkB ln
[
cosh

λR
kBT

]
+NAkBT

sinhλR/kBT

coshλR/kBT

(
− λR
kBT 2

)
= NAkB ln

[1

2
+
k2BT

2 + λ2R
~2ω2

D

]
+NAkB ln

[
cosh

λR
kBT

]
+

4NAk
3
BT

2

(~ωD)2 + 2(k2BT
2 + λ2R)

− NAλR
T

tanh
λR
kBT

H = F + TS =
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3
BT

3
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−NAλR tanh
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CH =
(∂H
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)
H

=
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3
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2
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5
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+
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2
R

kBT 2

1
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低温时，CH ' 12NAk
2
BT

2/[(~ωD)2 + 2λ2R]。高温下，CH ' 2NAkB。
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二、 涡轮机的工作过程是 Brayton 循环。这一循环由四个过程构成：等压膨胀

（压强为 p1），绝热膨胀，等压压缩（压强为 p2）和绝热压缩。假设工作

气体为理想气体，其 Cp/Cv = γ 是常数，且工作过程是可逆的。

1. 在 p− V 图上画出工作过程。

2. 计算每个过程的吸热和对外做功。

3. 计算该热机的工作效率。

• 略

• 等压膨胀理想气体绝热过程pV γ = const，

Q12 =

∫ T2

T1

CpdT = Cp(T2 − T1)

W12 =

∫ V2

V1

pdV = p1(V2 − V1) = NR(T2 − T1)

Q23 = 0

W23 =

∫ V3

V2

pdV =

∫ V3

V2

C

V γ
dV =

1

γ − 1

[ C

V γ−1
2

− C

V γ1
3

]
=
NR(T2 − T3)

γ − 1

Q34 = −Cp(T3 − T4)
W34 = p2(V4 − V3) = NR(T4 − T3)
Q41 = 0

W41 =
NR(T4 − T1)

γ − 1

• 总功

W = W12 +W23 +W34 +W41 = NR
[
T2 − T1 +

T2 − T3
γ − 1

+ (T4 − T3) +
T4 − T1
γ − 1

]
=
NRγ

γ − 1
[T2 − T1 + T4 − T3] = Cp(T2 − T1 + T4 − T3)

绝热过程

C = pV γ ⇒ C = p
1
γ V = p−

γ−1
γ T ⇒ T = Cp

γ−1
γ
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γ
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W
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(p2
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) γ−1
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三、 一弹性棒在外力 F，温度 T 下的伸长长度 l 为

µ0[1 + β(T − T0)]l = α(T − T0) + F，

其中 α, β, µ0 和 T0 为大于零的常数。保持长度不变的等长热容

Cl(l, T ) = A(l)T。当 l = 0 时，A(0) = A0。

1. 求等长热容 Cl(l, T ) 中 的A(l)。

2. 求温度从 T0 变为 T，伸长长度从 0 变为 l 时的熵改变。

3. 求外力为零时的等力热容 CF。

4. 求绝热条件下温度弹性系数 µs，即棒绝热伸长一个单位长度导致的温

度变化量。

1.

dF = −SdT + Fdl

Cl = T
(∂S
∂T

)
l(∂Cl

∂l

)
T

= T
∂2S

∂l∂T
= T

∂2S

∂T∂l
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∂T 2

)
l
= 0
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∂T

)
l
=
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T
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)
T

= −
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∂T

)
l
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∂T

)
l
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T0,0

(∂S
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)
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)
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2

2
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∂l
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l
/
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)
F
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(∂F
∂T

)
l

2

/
(∂F
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)
T
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4.

µS =
(∂T
∂l

)
S

=
∂(T, S)

∂(l, S)
=
∂(T, S)

∂(l, T )
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四、 假设某物质在临界点附近有−
(
∂p
∂V

)
T

= A(T − Tc) + B(V − Vc)2，其中Tc
和Vc 分别是该物质的临界点的温度和摩尔体积，A,B 是常数。

1. 请问 A 和 B 应该是大于零还是小于零？并给出理由。

2. 当温度 T 低于 Tc 时，物质可以处于气相或者液相。求温度非常接近

于Tc 时这两相的摩尔体积 Vg 和 Vl 和温度的关系。

3. 由于重力作用，气体内部的压强不再是一个常数，而是高度的函数。

因此相应物理量也是高度函数。求温度为 T 时，摩尔体积随高度的

变化率。

4. 在一般情况下，重力对热力学性质几乎没有作用。但是在非常靠近临

界点时，重力会有重要影响。请解释这个现象。

• 体系处于单相的平衡态时，稳定时应该有κT = − 1
v

(
∂v
∂p

)
T
> 0。而

在T > Tc 时，体系只有一个稳定相，因此A > 0，B > 0。

•

dµ = −sdT + vdp

∆µl =

∫ T,Vl

T,Vc

V dp =

∫ T,Vl

T,Vc

V
( ∂p
∂V

)
T
dV = −

∫ T,Vl

T,Vc

V [A(T − Tc) +B(V − Vc)2]dV

= −
[A(T − Tc)

2
(V 2

l − V 2
c ) +

BVc
3

(Vl − Vc)3 +
B

4
(Vl − Vc)4

]
' −(Vl − Vc)Vc

3
[3A(T − Tc) +B(Vl − Vc)2 + · · · ]

∆µg = −
[A(T − Tc)

2
(V 2

g − V 2
c ) +

BVc
3

(Vg − Vc)3 +
B

4
(Vg − Vc)4

]
' −(Vg − Vc)Vc

3
[3A(T − Tc) +B(Vg − Vc)2 + · · · ]

平衡时两项化学势相等，因此有∆µl = ∆µg。存在两相，Vg > Vc >

Vl。并且在稳定时要求κT > 0，因此要求(Vl/g−Vc)2 > A(Tc−T )/B。

在T 非常接近于Tc 时，有解(Vl − Vc)2 = (Vg − Vc)2 = 3A(Tc − T )/B。

• 在重力场中，达到平衡时，不同位置的

dp(z)

dz
= ρ(z)g =

mg

v(∂p
∂v

)
T

dv

dz
=
mg

v
dv

dz
=

1

v

(∂v
∂p

)
T
mg = −mgκT

• 一般情况下，mgκT 很小，dv/dz 很小，因此重力对物理量影响不
大。但是在临界点附近，κT 发散，导致dv/dz 发散。所以在临界点附

近重力场作用很大。



五、 太阳辐射可以近似地看成是理想黑体辐射，已知太阳半径为 Rs ' 7 ×
105 km。

1. 平衡时，内能密度 u = u(T ) 只和温度有关，黑体辐射压强 p = u/3，

辐射能流密度是J = cu/4，其中c 是光速。求黑体辐射的能流密度和

温度的关系。

2. 把小行星当成一个半径为 r 的理想黑体。当 r 很小时，可以假设小

行星处于热力学平衡态。求小行星的温度和它环绕太阳运动的轨道半

径 R 的关系（R� Rs � r）。

3. 地球轨道半径大约为 1.5× 108 km，请估计太阳表面温度Ts。

4. 太阳辐射会对小行星产生一个向外的推力。当小行星的半径 r 比较大

时，这个推力远小于引力。但随着 r 减小，辐射推力的作用相对变

大。假设小行星质量密度为ρ，估计轨道半径为 R 时辐射推力和引力

抵消时的 r。已知太阳质量为Ms。

•

dF = −SdT − pdV
U(T, V ) = u(T )V = F + TS

u(T ) =
(∂U
∂V

)
T

=
(∂F
∂V

)
T

+ T
( ∂S
∂V

)
T

= −p+ T
( ∂p
∂T

)
V

= −u
3

+
T

3

du

dT
du

u
= 4

dT

T

u = aT 4

J =
cu

4
=
ac

4
T 4 = σT 4

• 小行星吸收太阳辐射面积为πr2，发射面积为4πr2。吸收和发射相等

时，达到平衡。假设太阳表面温度为Ts，

4πR2
sσT

4
s

4πR2
πr2 = 4πr2σT 4

T 4 =
R2
s

4R2
T 4
s

• 地球表面温度大约为TE = 300 K，因此Ts =
√

2R
Rs
TE ' 6200 K。

• 令太阳质量为Ms，引力常数G，

F = pA =
u

3
πr2 =

1

3

4πR2
sσT

4
s

4πR2

4

c
πr2 =

4πr2R2
s

3cR2
σT 4

s

FG =
GMs

R2
ρ

4πr3

3

F = FG ⇒ r =
R2
sσT

4
s

GMscρ
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