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【答题中可能用到的数学关系：∫ ∞
−∞

e−x
2

dx =
√
π ；

∫ ∞
0

x2e−x
2

dx =

√
π

4
；

∫ ∞
0

xpe−xdx = Γ(p+ 1)；∫ ∞
0

xp−1 ln[1± λe−x]dx = ±Γ(p)
∞∑
n=1

n−(p+1)(∓λ)n；

其中 Γ(p) 是欧拉 Γ 函数。Γ(p + 1) = pΓ(p)；当 p 是整数时 Γ(p + 1) =

p!；Γ(1/2) =
√
π。物理常数：电子电荷 e = 1.602 × 10−19 库仑；Boltzmann 常

数 kB = 1.3806× 10−23 J/K。】

一、 考虑恒星里的中性碳原子。碳原子的电子基态能量为零，简并度为 9；第

一激发态能量 ε = 0.82 eV，简并度为 5。更高能级的能量太大，可以忽略

不计。恒星里的碳原子粒子数密度比较小，相互作用以及全同性不重要。

1. 求恒星的温度为 T 时，碳原子的单粒子配分函数。

2. 求温度为 T 时处于基态和第一激发态时的碳原子数目之比。



3. 通过光谱测量，发现某个恒星有 10% 的碳原子处于第一激发态，求

该恒星的温度。

z =
∑
l

ωle
−βωl = 9 + 5e−βε

a1
a0

=
5

9
e−βε

ε

kBT
= − ln

9a1
5a0

T = − ε

kB ln(9a1/5a0)
= 5.5× 103 K

二、 N 个质量为 m 的原子处于约束势V (r) = a|r| 中，其中 r 是原子位置，a >

0 是约束强度。不考虑原子之间的相互作用。

1. 求温度为 T 时单粒子配分函数。

2. 求温度为 T 时的内能和热容。

3. 绝热地把约束强度 a 减低到 a′，求末态的最低温度 T ′。

•

ε(r,p) = p2/2m+ V (r)

z =

∫
e−βε(r,p)

d3rd3p

h3

=
(4π)2

h3

∫
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∫
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(2mkBT )3/2
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∫
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=
24π

a3

(2πm
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)3/2
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•

U = NkBT
2∂ ln z

∂T
=

9NkBT

2

C =
9NkB

2

•

S = NkB ln z +
U

T
− kB lnN !

= NkB ln
[24π

a3

(2πm
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)3/2
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]
+
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三、 处于磁场 B 中自旋为 1 的玻色子能量为 εs(p) = p2/2m − µBBs，其

中m是粒子质量，µB 是 Bohr磁矩，s是自旋量子数，可能取值为 0,±1。

假设粒子数密度为 n，且粒子间的相互作用很弱。

1. 求高温下单位体积内磁矩 M̄ = nµ〈s〉 和线性磁化率 χ = lim
B→0

M̄

B
。

2. 外磁场比较小的情况下（µBB � kBT）发生玻色–爱因斯坦凝聚的温

度 Tc。

3. 求低温下（T < Tc）的单位体积磁矩。

•

µ ≤ −µBB
λs = e−β(−sµBB−µ) = eβ(sµBB+µ) = λeβsµBB ≤ 1

ln Ξ = −
∑
s

ln[1− e−β[εs(p)−µ]]d
3rd3p

h3
− ln[1− λ1]

= −4π(2m)3/2V

h3

∫ ∑
s
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√
εdε− ln[1− λ1]

= V
(2πmkBT
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)3/2∑
s
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∑
l
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高温时 λs � 1，

ln Ξ = V
(2πmkBT

h2

)3/2∑
s
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(2πmkBT

h2

)3/2∑
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(2πmkBT

h2

)3/2
eβµ[1 + 2 cosh βµBB]
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=
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' 2N
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• 磁场很弱时发生 BEC，λs ' 1，

N = V
(2πmkBTc

h2

)3/2
3F3/2(1)

Tc =
h2

2πmkB

[ n

3F3/2(1)

]2/3



• 发生 BEC 后，处于自旋 s 激发态上的粒子数密度为

ns,ex '
(2πmkBT

h2

)3/2
F3/2(1)

=
(2πmkBTc

h2

)3/2
F3/2(1)

( T
Tc

)3
=
n

3

( T
Tc

)3/2
处于 s = 1 基态上的粒子数密度

n1 = n−
∑
s

ns,ex = n
[
1− (T/Tc)

3/2
]

由于处在激发态上的三种粒子数近乎相同，对磁矩贡献为零。只有处

于 s = 1 基态上的粒子对磁矩有贡献，因此磁矩密度为

M = n1µB = nµB
[
1− (T/Tc)

3/2
]

四、 N 个无相互作用的自旋为 1/2 的费米子处在一个截面积为 A，高度

为 L 的柱形容器里。考虑重力场的作用，动量为 p 位置在 r 的粒子

能量为 ε(r,p) = p2/2m + mgz，其中 m 为粒子质量，g 为重力加速

度，0 < z < L。

1. 求费米能 εF，保留到 mgL 的最低非零项。

2. 求零温下的内能。

3. 求粒子数密度和高度 z 的关系 n(z)。

•

ε(r,p) = mgz + p2/2m

N = 2

∫
Θ[εF − ε(r,p)]

d3rd3p

h3

=
4πA(2m)3/2

mgh3

∫ mgL

0

dεr

∫ εp

0

dεp
√
εpΘ(εF − εr − εp)

=
8πA(2m)3/2

3mgh3

∫ mgL

0

dεr (εF − εr)3/2

=
16πA(2m)3/2

15mgh3

[
ε
5/2
F − (εF −mgL)5/2

]
=

16π(2m)3/2

15mgh3
ε
5/2
F

{
1−

[
1− 5

2

mgL

εF
+

15

8

(mgL)2

ε2F
+ · · ·

]}
=

8πV (2m)3/2

3h3
ε
3/2
F

[
1− 3

4

mgL

εF

]
ε0F =

h2

2m

(3n

8π

)2/3
ε0F = εF

[
1− 3mgL

4εF

]2/3
' ε0F

[
1 +

∆εF
ε0F

][
1− mgL

2ε0F

]
εF = ε0F +mgL/2
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• 内能

U = 2

∫
Θ[εF − ε(r,p)]ε(r,p)
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√
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7
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=
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=
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5
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•

n(z) = 2

∫
Θ[εF − ε(z,p)]d3p/h3

=
4π(2m)3/2

h3

∫
Θ(εF −mgz − εp)ε1/2p dεp

=
8π(2m)3/2

3h3
(εF −mgz)3/2 =
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(εF −mgz
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' N

V

[
1 +
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' n

[
1 +

3mg(L/2− z)

2ε0F

]
五、 用如下简化模型考虑 DNA。一条 DNA 由 N 对碱基组成，它只能从一头

打开，即只有前面的 p − 1 个碱基对相继打开后，第 p 个才能打开。碱基

对只能以一种方式结合在一起，此时能量为零；打开一个碱基对需要消耗

能量 ε（> 0），打开后每个碱基可能处于 G（G > 1） 个不同的状态。

1. 求打开 p 个碱基对时需要的能量 Ep 和简并度 Ωp。

2. 求温度为 T 时，DNA 的正则配分函数。

3. 求打开的碱基对的平均个数 p̄ 和涨落。

4. 在热力学极限下，即 N → ∞，体系能否发生相变？如果可以发生相
变，求发生相变的温度 Tc 和相变潜热。



•

Ep = pε

Ωp = G2p

•

Z =
∑
p

Ωpe
−βEp =

N∑
p=0

G2pe−βpε =
N∑
p=0

λp λ = G2e−βε

=
1− λN+1

1− λ

•

p =
1

Z

N∑
p=0

pλp =
1

Z
λ
∂

∂λ

N∑
p=0

λp

=
1

Z
λ
∂Z

∂λ
= λ

∂ lnZ

∂λ
=
∂ lnZ

∂ lnλ

= (N + 1)
λN+1

λN+1 − 1
− λ

λ− 1

p2 =
1

Z

N∑
p=0

p2λp =
1

Z

∂2Z

∂(lnλ)2

=
∂2 lnZ

∂(lnλ)2
+ p2

∆p2 =
∂2 lnZ

∂(lnλ)2
= λ

∂p

∂λ

= −(N + 1)2
λN+1

(λN+1 − 1)2
+

λ

(λ− 1)2

•

p =


N − 1/(λ− 1) ' N λ > 1

λ/(1− λ) ' 0 λ < 1

因此相变温度在 1 = λc = G2e−ε/(kBTc)，Tc =
ε

2kB lnG
。

S/kB = lnZ + βU = lnZ + βpε

= ln
1− λN+1

1− λ
+ βε

[
(N + 1)

λN+1

λN+1 − 1
− λ

λ− 1

]
=

{
N lnλ+Nβε = 2N lnG λ > 1

0 λ < 1

L = T∆S = 2NkBTc lnG = Nε
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