

一、气体中的声速 $C^2 = 1/(\rho\kappa_s)$, 其中 $\rho = M/V$ 是气体质量密度, $\kappa_s = -\frac{1}{V} \left(\frac{\partial P}{\partial V} \right)_S$ 是绝热压缩系数。在低压下, 一摩尔某气体的状态方程可以用如下方程近似:

$$\frac{pV}{RT} = 1 + \frac{B}{V}$$

其中 p, V 分别是压强和体积, R 是理想气体常数, 维理系数 B 是温度 T 的函数, 由分子间的相互作用决定。已知压强为零时, 该气体的等压热容 C_p^0 为和温度无关的常数。

1. 求温度为 T , 压强为 p 时该气体的摩尔等压热容 $C_p(T, p)$, 准确到 B 及其导数的一次方。
2. 求 $B = 0$ 时的声速 C_0 与温度及压强的关系。
3. $B \neq 0$ 时, $C^2 = C_0^2[1 + f(T)p]$ 。求 $f(T)$ 的表达式, 准确到 B 及其导数的一次方。

二、常温常压下的固体体积 V 随温度 T 和压强 p 的变化很小, 可以用如下线性关系近似: $V(T, P) = V_0(1 + \alpha_0 T - \kappa_0 p)$, 其中 V_0 , α_0 和 κ_0 分别是 $T = 0$ 和 $p = 0$ 下的体积, 等压膨胀系数和等温压力系数。等容热容 C_v 为 $3NR$, 其中 N 是摩尔数, R 是理想气体常数。

1. 求温度和压强分别为 T 和 p 时, 该固体的内压 $\pi_T = (\partial U / \partial V)_T$, 其中 U 是内能。

2. 求温度为 T , 体积为 V 时的内能 U 和熵 S 。

3. 求特性函数 $U = U(S, V)$ 。

三、实验发现，温度为 T 时，黑体辐射的辐射通量 $J = c u(T)/4 = \sigma T^4$ ，其中 c 和 σ 分别是光速和 Stefan-Boltzmann 常数， $u(T)$ 是单位体积的内能密度。

1. 求黑体辐射的压强。
2. 求黑体辐射的化学势。
3. 把黑体辐射当成工作物质构造一个 Carnot 热机，工作于温度为 T_1 和 T_2 的两个热源。求每个过程对外做功和吸收/放出的热量，以及热机的效率。

2. N_1 物质 1 和 N_2 摩尔物质 2 混合后系统的 Gibbs 自由能变为

$$G(T, p, N_1, N_2) = N[x_1g_1 + x_2g_2 + x_1x_2(a + b/T)],$$

其中 $g_i = \mu_i^0(T, p) + RT \ln x_i$, $\mu_i^0(T, p)$ 是纯净的第 i 种物质的化学势, $x_i = N_i/N$ 是混合物中第 i 种物质的摩尔含量, $N = N_1 + N_2$ 是总摩尔数, a 和 b 是常数。

1. 保持温度 T 和压强 p 不变, 把一摩尔 1 和一摩尔 2 两物质混合, 求混合前后熵的改变。
2. 同上题, 求混合前后体积的改变量。
3. 纯净的第 i 物质的摩尔等压比热 c_i 为常数, 保持压强 p 不变, 求把上述混合物的温度从 T_1 提高到 T_2 需要吸收的热量。

五、某超导材料处于正常态时磁矩 M 很小，可以当成零。在低温、小磁场时，体系处于超导态，由于 Meissner 效应，磁感应强度 $B = \mu_0(H+M)$ 为零，其中 H 是外加磁场。当磁场变大超过临界磁场 H_c 后，超导态被破坏，系统回到正常态。【提示：磁系统对外做功的元功表达式为 $-\mu_0 H dM$ 。】

1. 外磁场从零变成 H ，求正常态和超导态的 Gibbs 自由能 $G_N(T, H)$ 和 $G_S(T, H)$ 的变化量。
2. 利用热力学第三定律，求 $T = 0$ 附近的临界磁场随温度的变化关系。
3. 外磁场为零时，超导相变为二阶相变。利用朗道理论，在超导转变温度附近两态的 Gibbs 自由能差为 $G_N(T, 0) - G_S(T, 0) = a(T_c - T)^2$ ，其中 $a > 0$ 为常数， T_c 是 $H = 0$ 时的相变温度。求 T_c 附近临界磁场强度 H_c 随温度的关系。