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1. 考虑 𝑛维复 Hilbert空间 ℋ = C𝑛 上的算子,它们具有 𝑛× 𝑛的矩阵形式,证明, ℋ上的任意的算子 𝑋 可以

表示为厄密算子和反厄密算子相加的形式,

𝑋 = 𝐻 +𝐴,

其中 𝐻 = 𝐻†, 𝐴 = −𝐴†.

2. 𝐴和 𝐵 表示两个自旋 1/2粒子. 二者之间的相互作用是 𝐻 int = −𝑔~𝜎𝐴
𝑧 ⊗ 𝜎𝐵

𝑦 , 𝑔是耦合常数. 忽略两个粒子

自身的哈密顿量,整个两体系统的哈密顿量就是 𝐻 = 𝐻 int,时间演化算子是,

𝑈(𝑡) = 𝑒−𝑖𝐻int𝑡/~ =

⎛⎜⎜⎜⎜⎜⎝
cos 𝑔𝑡 sin 𝑔𝑡 0 0

− sin 𝑔𝑡 cos 𝑔𝑡 0 0

0 0 cos 𝑔𝑡 − sin 𝑔𝑡

0 0 sin 𝑔𝑡 cos 𝑔𝑡

⎞⎟⎟⎟⎟⎟⎠ .

(a) 在 Heisenberg图像中,写出 𝐴粒子的力学量 𝜎𝐴
𝑧 随时间变化的形式.

(b) 在 Heisenberg图像中,写出 𝐵 粒子的力学量 𝜎𝐵
𝑥 , 𝜎𝐵

𝑦 , 𝜎𝐵
𝑧 随时间变化的形式.

注注注 𝐴 粒子的力学量 𝜎𝐴
𝑧 应该表示为 𝜎𝐴

𝑧 ⊗ 1
𝐵 , 而 𝐵 粒子的力学量 𝜎𝐵

𝑥 应该表示为 1
𝐴 ⊗ 𝜎𝐵

𝑥 , 这里的 1
𝐴 和

1
𝐵 分别是关于粒子 𝐴和粒子 𝐵 的单位矩阵. 另外, 如果利用 Baker-Hausdorff公式 𝑒𝐴𝐵𝑒−𝐴 = 𝐵 + [𝐴,𝐵] +

1
2! [𝐴, [𝐴,𝐵]] + 1

3! [𝐴, [𝐴, [𝐴,𝐵]]] + · · · ,那么未必需要用到 𝑈(𝑡)的矩阵表示.

3. 两体量子系统由子系统 𝐴和 𝐵 构成. 两个子系统都是自旋 1/2粒子. 子系统 𝐴有两个彼此互补的观测量,

记作 𝐴1 和 𝐴2; 子系统 𝐵 的两个彼此互补的观测量为 𝐵1 和 𝐵2. 也就是说, 设 𝐴1 的两个本征向量为 |𝛼(1)
0 ⟩和

|𝛼(1)
1 ⟩, 𝐴2 的两个本征向量为 |𝛼(2)

0 ⟩和 |𝛼(2)
1 ⟩,那么对于 𝑖, 𝑗 ∈ {0, 1},有 |⟨𝛼(1)

𝑖 |𝛼(2)
𝑗 ⟩| = 1√

2
. 观测量 𝐵1 和 𝐵2 之间

的互补性有与此相同的描述. 考虑如下形式的两体系统的观测量,

𝐶 = 𝐴1 ⊗𝐵1 +𝐴1 ⊗𝐵2 +𝐴2 ⊗𝐵1 −𝐴2 ⊗𝐵2.

对于所有的 C2 ⊗ C2空间中量子态 |Ψ⟩,证明观测量 𝐶 的期望值 ⟨𝐶⟩ = ⟨Ψ|𝐶|Ψ⟩的最大值等于 2
√

2.

注注注 为了简化计算,可以将观测量 𝐴𝑖 和 𝐵𝑗 选择为特殊形式,比如 Pauli矩阵.
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4. 对某个量子系统进行测量. 制备过程提供了两个量子态, |𝜓1⟩和 |𝜓2⟩. 测量方式有两种,记作ℳ1 和ℳ2. 它

们都是投影测量,即测量算子都是投影算子. 每一种测量方式都有两个观测结果,我们可以用 1和 2标记这两个

测量结果.

∙ 以ℳ1方式进行测量,与测量结果 1对应的投影算子是 Π
(1)
1 ,与测量结果 2对应的投影算子是 Π

(1)
2 .

∙ 以ℳ2方式进行测量,与测量结果 1对应的投影算子是 Π
(2)
1 ,与测量结果 2对应的投影算子是 Π

(2)
2 .

而且,我们还可以设定,测量是完全的,即 Π
(𝑖)
1 + Π

(𝑖)
2 = 1, 𝑖 = 1, 2,这里 1是描述该量子系统的 Hilbert空间上的

单位阵.

现在考虑测量结果的几率分布.用ℳ𝑚 方式测量量子态 |𝜓𝑠⟩,得到结果 𝑟的几率记作 𝑝
(𝑚)
𝑟,𝑠 ,这里, 𝑚, 𝑠, 𝑟 ∈ {1, 2}.

考察下面的几率表.

ℳ1测量 ℳ2测量

|𝜓1⟩ |𝜓2⟩
Π

(1)
1 1 0

Π
(1)
2 0 1

|𝜓1⟩ |𝜓2⟩
Π

(2)
1 1 1

2

Π
(2)
2 0 1

2

上表的左侧一栏描述的是用ℳ1 方式测量两个不同的量子态 |𝜓1⟩和 |𝜓2⟩得到的结果的几率分布.例如,用该种

测量方式测量 |𝜓1⟩,得到结果 1 (对应于投影算子 Π
(1)
1 )的几率等于 1,得到结果 2 (对应于投影算子 Π

(1)
2 )的几率

等于 0,即𝑝(1)1,1 = 1, 𝑝(1)2,1 = 0. 而用同样的测量方式观测量子态 |𝜓2⟩,则得到结果 1的几率是 0,得到结果 2的几率

为 1,即 𝑝
(1)
1,2 = 0, 𝑝(1)2,2 = 1. 对上表右侧一栏有类似的解读.

第一个问题是: 如果这个量子系统是一个双值系统, 描述它的量子态的 Hilbert 空间是一个两维的复空间, 即

ℋ = C2,那么我们能否得到上述几率表?

接着考虑三维复空间,即 ℋ = C3. 基向量设为 |0⟩, |1⟩, |2⟩. 再设 |𝜓1⟩ = |0⟩, |𝜓2⟩ = |1⟩. 为了得到几率表左侧一栏
的几率分布,我们令ℳ1测量方式的两个投影算子分别是

Π
(1)
1 = |0⟩⟨0| + |2⟩⟨2|, Π

(1)
2 = |1⟩⟨1|.

这里 Π
(1)
1 是投影到两维子空间上的投影算子. 而且,上面的两个投影算子满足 Π

(1)
1 + Π

(1)
2 = 13,这里 13是 3 × 3

的单位阵.

第二个问题是: 构造ℳ2测量方式中的两个投影算子 Π
(2)
1 和 Π

(2)
2 ,实现几率表右侧一栏中几率分布.

5. 自旋为 1的粒子的自旋角动量 𝑆 在 𝑥, 𝑦, 𝑧三个方向上的分量分别记作 𝑆𝑥, 𝑆𝑦 , 𝑆𝑧 . 它们满足对易关系

[𝑆𝑥, 𝑆𝑦] = 𝑖~𝑆𝑧, (1)

以及循环置换的形式. 它们的矩阵形式是

𝑆𝑥 =
~√
2

⎛⎜⎜⎝
0 1 0

1 0 1

0 1 0

⎞⎟⎟⎠ , 𝑆𝑦 =
~√
2

⎛⎜⎜⎝
0 −𝑖 0

𝑖 0 −𝑖
0 𝑖 0

⎞⎟⎟⎠ , 𝑆𝑧 = ~

⎛⎜⎜⎝
1 0 0

0 0 0

0 0 −1

⎞⎟⎟⎠ .

注意到 𝑆𝑧 具有对角形式,可以说这是在 𝑆𝑧 表象中的表示.

另一方面,我们还可以把它们表示为

𝐽𝑥 = 𝑖~

⎛⎜⎜⎝
0 0 0

0 0 −1

0 1 0

⎞⎟⎟⎠ , 𝐽𝑦 = 𝑖~

⎛⎜⎜⎝
0 0 1

0 0 0

−1 0 0

⎞⎟⎟⎠ , 𝐽𝑧 = 𝑖~

⎛⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎠ . (2)
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可以验证, (2)中的表示也满足 (1)式中的对易关系.以下令 ~ = 1.

我们的目的是,找到一个酉变换 𝑈 ,使得 𝑈𝑆𝑘𝑈
† = 𝐽𝑘,其中 𝑘 = 𝑥, 𝑦, 𝑧. 为此,我们可以先考虑 𝑆𝑧 和 𝐽𝑧 的本征向

量,分别记作 |𝜁𝑖⟩ 和 |𝜂𝑗⟩,这里的下标 𝑖, 𝑗 ∈ {−1, 0,+1},对应于 𝑆𝑧 和 𝐽𝑧 的本征值.

|𝜁+1⟩ =

⎛⎜⎜⎝
1

0

0

⎞⎟⎟⎠ , |𝜁0⟩ =

⎛⎜⎜⎝
0

1

0

⎞⎟⎟⎠ , |𝜁−1⟩ =

⎛⎜⎜⎝
0

0

1

⎞⎟⎟⎠ ,

|𝜂+1⟩ =

⎛⎜⎜⎝
1√
2
𝑖√
2

0

⎞⎟⎟⎠ , |𝜂0⟩ =

⎛⎜⎜⎝
0

0

1

⎞⎟⎟⎠ , |𝜂−1⟩ =

⎛⎜⎜⎝
1√
2

− 𝑖√
2

0

⎞⎟⎟⎠
然后构造一个酉变换 𝑉 ,

𝑉 = |𝜂+1⟩⟨𝜁+1| + |𝜂0⟩⟨𝜁0| + |𝜂−1⟩⟨𝜁−1|

容易验证, 𝑉 𝑆𝑧𝑉
† = 𝐽𝑧 . 但是,让 𝑉 作用于 𝑆𝑥 和 𝑆𝑦 之后,发现

𝑉 𝑆𝑥𝑉
† =

⎛⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ , 𝑉 𝑆𝑦𝑉
† =

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ .

这个结果与 𝐽𝑥 和 𝐽𝑦 还有很大差距. 于是考虑对 𝑉 作一个修正,令

𝑊 =

⎛⎜⎜⎝
0 −1 0

1 0 0

0 0 1

⎞⎟⎟⎠ 𝑉.

计算后发现

𝑊𝑆𝑧𝑊
† = 𝐽𝑧,

𝑊𝑆𝑥𝑊
† =

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ , 𝑊𝑆𝑦𝑊
† =

⎛⎜⎜⎝
0 0 −1

0 0 0

−1 0 0

⎞⎟⎟⎠ .

至此,变换后的非零矩阵元的位置与 𝐽𝑥 和 𝐽𝑦 是相同的了. 但是还需要进一步对𝑊 作修正才能达到我们的目的.

问题是: 基于上述分析,写出酉变换 𝑈 的形式.
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6. 我们知道,对于两个量子态 |𝜓⟩和 |𝜙⟩,可以用 |⟨𝜓 |𝜙⟩|衡量它们之间的重叠程度,或者说相似程度.推广到对

量子态的变换,例如酉变换,我们有类似的说法. 设 𝑈 和 𝑉 是两个 C2 空间上的酉变换.这两个酉变换之间的相似

程度可以用 𝐹 (𝑈, 𝑉 )衡量.

𝐹 (𝑈, 𝑉 ) =
1

4
|Tr(𝑈†𝑉 )|2 =

1

4
|Tr(𝑉 †𝑈)|2.

|⟨𝜓 |𝜙⟩|与 𝐹 (𝑈, 𝑉 )之间的类似性体现在: 它们都用到内积形式,前者涉及态矢量之间的内积,而后者则涉及算子

之间的内积.容易看出,当 𝑈 = 𝑉 时, 𝐹 (𝑈,𝑈) = 1,表明 𝑈 与其自身的相似程度最大,理应如此.

现在假设 𝑈 和 𝑉 有如下随时间变化的形式,

𝑈(𝑡) = exp

{︂
−𝑖𝜔𝑢𝑡

2
𝜎𝑢

}︂
, 𝑉 (𝑡) = exp

{︂
−𝑖𝜔𝑣𝑡

2
𝜎𝑣

}︂
,

其中 𝜔𝑢 和 𝜔𝑣 为常数, 𝜎𝑢 = 𝑢 · 𝜎, 𝜎𝑣 = 𝑣 · 𝜎,而 𝑢和 𝑣 是 R3 中的单位向量. 这时,衡量两个酉变换的相似程度

的 𝐹 (𝑈, 𝑉 )是时间的函数,记作 𝐹 (𝑡).

第一个问题是: 写出 𝐹 (𝑡) 的具体形式, 分析说明这样一个事实: 当 𝜔𝑢 ̸= 𝜔𝑣 时, 一定存在某个时刻 𝜏 , 使得

𝐹 (𝜏) = 0,即,在 𝜏 时刻两个酉变换 𝑈(𝜏)和 𝑉 (𝜏)是完全不相似的,换句话说,它们是可以区分的.

另一方面,我们可以考虑量子态随时间的演化. 设系统的初态是 |𝜂⟩ ∈ C2,分别在时间演化算子 𝑈(𝑡)和 𝑉 (𝑡)的作

用下,

|𝜂⟩ −→ |𝜓(𝑡)⟩ = 𝑈(𝑡)|𝜂⟩, |𝜂⟩ −→ |𝜙(𝑡)⟩ = 𝑉 (𝑡)|𝜂⟩.

在 𝑡时刻, |𝜓(𝑡)⟩和 |𝜙(𝑡)⟩之间的重叠程度是

𝑓(𝑡) = |⟨𝜙(𝑡) |𝜓(𝑡)⟩| = |⟨𝜂|𝑉 (𝑡)†𝑈(𝑡)|𝜂⟩| = Tr
[︀
𝑉 †(𝑡)𝑈(𝑡) 𝜂

]︀
,

其中 𝜂 = |𝜂⟩⟨𝜂|.

第二个问题是: 怎样的 |𝜂⟩可以使 𝑓(𝑡)达到最小值?也就是说,这样的 |𝜂⟩可以体现出在 𝑡时刻两个酉变换 𝑈(𝑡)

和 𝑉 (𝑡)的可区分性.

注注注 在 𝑓(𝑡)的表达式中出现了 𝑉 †(𝑡)𝑈(𝑡), 令 𝑊 (𝑡) = 𝑉 (𝑡)†𝑈(𝑡), 显然, 𝑊 (𝑡)也是酉矩阵. 于是可以暂时不考虑

𝑈(𝑡) 和 𝑉 (𝑡) 的具体形式而仅仅关注 𝑊 (𝑡). 设 𝑊 (𝑡) 的本征方程是 𝑊 (𝑡) = 𝑤0(𝑡)|𝜔0⟩⟨𝜔0| + 𝑤1(𝑡)|𝜔1⟩⟨𝜔1|, 即,

𝑊 (𝑡)的本征值是 𝑤0(𝑡)和 𝑤1(𝑡),相应的本征向量是 |𝜔0⟩和 |𝜔1⟩. 然后以 |𝜔0⟩和 |𝜔1⟩作为 C2 空间的基向量考虑

|𝜂⟩的形式.
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